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The stationary problem of the structure of the plane boundary layer between a magnetic field and a col- 
lisionless plasma is solved. A method is proposed for numerically solving a system of nonlinear equations 
for a selfconsistent electromagnetic field. This method makes it possible to obtain, for a broad class of 
plasma particle distribution functions, a complete spatial picture of the boundary layer without the as- 
sumption of electrical neutrality. Results of specific calculations for normal and oblique incidence of a 
plasma on a "magnetic wall" are discussed. The entire study is carried out in relativistic-invarianr form. 

The first theoretical examination of the equilibrium transition layer associated with reflection of a plasma stream 
from a "magnetic wall" was made by Chapman and Ferraro [1]. In recent years, work in this direction, associated with 
various problems in astrophysics and plasma physics in which the plasma is screened for a finite t ime from an externai 
magnetic  field, has been pursued by a number of authors [2-7]. The majority of these authors assume that the plasma 
is strictly neutral over the entire boundary layer, which makes it possible to limit the investigation to the self-consistent 
magnetic field H. Then, in view of the nonlinearity of the initial equations, best results are obtained for 6-type plasma 
particle distribution functions (monoenergetic streams). For nonrelativistic energies, the "neutral n theory gives the 
order of magnitude of the characteristic dimensions of the boundary layer and in some particular problems, the form of 
the spatial relation for H. 

From the viewpoint of the general theory, it is of great interest to obtain a complete spatial picture of the self- 
consistent electromagnetic field over the entire boundary layer for extended distribution functions without limiting 
oneself to the particle energies. Naturally, in view of the great mathematical  difficulties, progress in this direction can 
only be made by resorting to modern computer  technology. 

A detailed mathematical  formulation of such a problem in plane geometry for a nonrelativistic rarefied plasma 
is solved in relativistic-invariant form. The suitability of this rigorous approach to the problem derives from the foUow- 
ing considerations: 

1. Upon reflection of a plasma stream incident on a "magnetic wall" at the turning point a large part of the ki- 
netic energy is transmitted to the light component. In this case, the electrons may become relativistic [9, 10, 21 

2. Consideration of the relativistic energies of plasma particles is of independent interest in certain problems in- 
volving the interaction of a plasma with a nonuniform magnetic  field in outer space. 

3. In the region of high plasma particle energies, the basic spatial scale factors of the problem are approached: 
the "magnetic" or characteristic layer thickness 

L= 

and the "electrostatic" or Debye radius D (R, r are the Larmor radii of the positively and negatively charged particles, 
respectively). This fact permits one to make effective use of numerical methods for finding the complete spatial pic-  
ture of the boundary layer. Note also that it is particularly at high particle energies that effects associated with plasma 
polarization appear most clearly and the classical idea's of energy redistribution among components, associated with the 
~neutral" theory of the boundary layer, are most blatantly violated. 

w 1. First let us recall the formulation of the stationary problem for a plane boundary layer (see [3, 8]). 

A plasma unperturbed at x -~ - oo is in dynamic equilibrium with a magnetic field H0 uniform at x ~ ~o (Fig. 1). 
The plasma is assumed to be sufficiently rarefied, i . e . ,  the range of the particles I:L >> R and collisions are not taken 
into account. We shall assume that a stationary regime is realized, all the physical quantities depending only upon 
one space coordinate, x. The plasma as a whole is also neutral at x --* - ~o: 

GO 

I (n§ (x))dx=O, 
--..o0 

no 

12 

*Paper read at the Fourth Riga Conference on magnetohydrodynamics, 22-27 July 1964. 



We assume that at x --~ - ~o 

Y 

z 

Fig. 1. Direction of pr incipal  

vector quantities in the plane 
boundary layer. 

the e lec t r ic  current in the yz plane is zero. (For s implici ty ,  we will  consider a two 
component plasma, where the charge on the individual  par t ic le  e = - s+ = - e .  
The subscripts - ,  + denote quantities pertaining to any two part icles  with negative 
and positive charge, respectively.  ) Al l  charged part icles are e las t i ca l ly  ref lected 
from the "magnet ic  wall"  (n+ (oo)= n_ (oo)= 0) and intersect the plane x = C, C 
_ 0% i . e . ,  the system under consideration does not contain part icles  with finite 
trajectories.  Moreover, let  H011 Oz. Thus, within the framework of a one-dimension-  
al  geometry,  the directions of a l l  the vector quantities are defined, and, in par t ic -  
ular (Fig. 1), the vector potent ia l  A (x) and the e lec t r ic  current j (x) screening the 

plasma from the magnet ic  field are para l le l  to the y-axis ,  the vector H (x) = 
= V x A (x) is pa ra l l e l  to the Oz-axis; the e lec t ros ta t ic  field strength vector g (x) = 
= - V �9 (x) is directed along the x-axis.  This vector is associated with charge sepa-  
ration following from the unequal moment  a of positive and negat ive part icles ,  as 

a result of which R ~ r. 

The problem consists in finding, for the equil ibr ium plasma configuration de-  
scribed, the steady selfconsistent e lec t romagnet ic  field whose specific form will  

c lear ly  be determined by the par t ic le  distribution in the uniform plasma at x -," - o o .  

w 2. We shall describe a system of collisionless charged part icles in a selfconsistent e lec t romagnet ic  field by 

means of a re la t iv is t ic  kinet ic  equation of the form proposed in [11]: 

OF O G O F = o  ( p k = m c % + ~ ) .  (2.1) 
[GF] _=_ U~ ox~: ozl~Op k 

Here Xk, u k, and Pk are, respect ively,  the four-dimensional  radius vector,  four-dimensional  veloci ty ,  and gen- 
e ra l ized  four-dimensional  momentum of the par t ic le ,  m is the par t ic le  mass, c is the speed of light,  and 

a (z, p) = - -  1 / ~  [ p ~ - -  (8/c) ~ l  ~ , (2. 2) 

where A k = {A x, Ay, A z, i~} is the four-dimensional  f ie ld potential .  Let us examine  the physical  meaning of the 

function F (x, p) in more detai l .  

In [11] the re la t iv i s t ic - invar ian t  description of the par t ic le  distribution in coordinate and momentum space is 

based on a vector  F k (x, p) (four-dimensional)  such that 

e f F~d~P = </~> (k = 1, 2, 3, 4), (2. 8) 

where Jk = {Jx'  j ' '  Jz' icp} is the ordinary four-dimensional  par t ic le  charge and current density vector. Since each 

par t ic le  makes a ~contribution to the current in the direct ion of its veloci ty ,  we have the equal i ty  F k = Fu k. In accord-  
ance with the terminology of [11], the scalar  F (x, p) wil l  be te rmed the scalar distribution function. The functions in-  
troduced in re la t iv i s t i c - invar ian t  form enable  us to describe a system of par t ic les  with different rest masses. If the l a t -  

ter are the same for a l l  par t ic les ,  then F contains a 5-function 

F (z, p) = ic/(x, p) 6 ( t  z -  [pk - -  (e/c) AkP - -  me). (2. 4) 

The scalar f(x, p), which, owing to the presence of the 5-function, may  be considered as a function of only three 

momenta  coincides with the ordinary distribution function, which is easy to show from the defini t ion of F. Thus, a re-  
la t ion between F (x, p) in Eq. (2. 1) and the distribution function f(x, v) used in [8] is established by relat ion (2.4). 

With the aid of (2. 3) we may  write the equations of the self-consistent  e l ec t romagne t i c  field in re la t iv i s t ic -  

invariant  form: 

OW la 4n Ox~ c ~</k)+----4~xi~fukS[(-- (P~--  *+- A~)2)'/'--m+cl ]+(x'p) d4p (2. 5) 

where W~t ~-- aA~/Oxk -- OAk/Oxz is the electromagnetic field tensor. 

It remains to apply system (2. I), (2. 5) to the problem posed in w i; the solution to the system of equations of the 

character is t ics  (2. 1) yields,  for each plasma component ,  a comple te  set of first integrals 

P~ = Pv menu -}- i A = ___ = (2. 6) ----- c Puo ,  P3 Pz mcus-~ pzo . 

13 



p, = i ( = o +  ~e) = ic ( ~ V~'r + Px ~ + [po- (~ /~)  A]~ + p + ~ r  = P,o.  (2. 6) 
(cont'd) 

Since uz ---- pzo/mc, without loss of generality, we may consider all particle motion in the plane xy, setting 
Pz0 = 0. The function F(x, p) is determined for x --~ - ~ (A ~ 0, ~ --~ 0)by assigning the distribution functions f• (Py0, 
P40) and relations (2. 4), (2. 6). 

We will now give a particular form to Eqs. (2. 5), keeping in mind that AI = A s ,, 0, A z ~- A, A 4 ~- iN 

d~Odx, = - -  ~4=ie { t~++ I E+Oj+ (x, p)6(l/__[pk __ (e/c) Ak]Z m+c)d ,p  - 
(2.7) 

d2 A 4gie ( i  Pu--  (e/c) A 
dx ~ - -  'g ,, j  m +  /+  (x ,  p) 6 ( V "  (Pk - -  (e/c) Ak) 2 - -  re+c) d 'p  - -  

A 2 

I pv+ce/c)m_ /_(x, p) 6 (~ f - -  (pk q - ( e / c ) A ~ ) ' - - m c ) d a p } .  
(2.8) 

In the presence of a ~o-function, we can discard four-dimensional integration in favor Of integration with respect 
d ~ to the element dpl P2 dp3 / E [12]. Transforming (2. 7), (2. 8), we obtain 

d':' A 4=  /o ! , + (elc) A 
- -  ( ] }  = /-,xrtCe { I  dl),t Ptl - -  I E. ,.~ [w. [X, p)dJL t dpti~, ( 2 .  lO> d~, c E_o I_ ( , p) d p ~ -  (e/c) A 

System (2. 9), (2. 10) contains one first integral expressing the continuity of the Txx-COmponent of the energy- 
momentum tensor Tik of the "particle-field ~ system: 

E 2  _ _  [ / 2  
dr- <Px~) = const.  (2. 11) 

where 

N~+o ]+ (x, p) dp= dpu. (2.12) 

The limits of integration in  (2.9)-(2. 12) are determined by the condi t ions  

p 2  > 0 ,  P~0 2 > 0 ' (2. 13) 

and the integrals of motion (2. 6). Inequalities (2. 13) define in momentum space the class of  infinite trajectories pass= 
ing through the fixed point x at which the average quantities <p>, <j>, <Pxx > are computed. 

System of equations (2. 9), ~ (2. 10) for the selfconsistent electromagnetic field is supplemented by the necessary 
four boundary conditions 

r 0, A(--oo) 0, (2. 14) 

E (oo) = (I)' (cr = 0, H(oo)=A'(ce)=Ho=[Sn(p~:x>]'[,>O. (2.15) 

As shown in [8], conditions (2. 14), (2. 15), with the assumptions of w 1, ensure that 

(-- ~) = o, H (-- ~) = 0 ,  (2. ~6) 

are simultaneously satisfied. 

Nevertheless, we must emphasize the fact that the problem of determining r A over the entire boundary layer 
is essentiaUy a boundary problem. The attempt to solve a system similar to (2, 9), (2. 10) with conditions (2. 14), (2. 16) , 
undertaken, for example, in [13], leads to erroneous results in view of the incorrectness of the Cauchy problem for 
equations of type (2. 9). In this case, the exponential growth of one of the linearly independent solutions of (2. 9) which 
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as may easily be shown, is already contained in the general solution of the equation linerized for x --~ - oo ( ~ --~ 0, 
A "*" 0), leads to instability of the numerical  calculation. 

The subsequent reduction of the problem to concrete form involves assigning particle distribution functions f• 
the unperturbed plasma for x --~ - ~ .  The study that follows is based on distribution functions of the form 

no ~ ( Pro ~ P~o ~ 
1+ (Pxo, Puo) = ~ l -  \m--~-_c 1~ for ~ < P,•  7!2 2C 2 t + 

Pxo2 (2. 17) 
/_+ (P~0, P~o) = 0 for , ~  > / ' ~ + ~ .  

The presence of a 6-function of (Pvo /m~c  - -  Pe) in  (2. 17) enables us to reduce the integrals on the right of 
(2. 9), (2. 10), and (2. 12) to quadratures without detriment to the physical results. In fact, it is not difficult to see that, 
using a series of terms (2, 17) with different Pl, P2, taken with a suitable weight, we may formally approximate any 
distribution function. NaturaIIy, in each specific physical situation the choice of distribution function itself must be 
determined to a significant degree by stability considerations. Note that the fact that the function (2. 17) is nonlocal 
with respect to Px0 precludes the divergence of <p> at the reflection point, which is inevitable when monoenergetic 
streams are considered [1, 2]. Moreover, the distribution function chosen enables us to investigate the case of oblique 
incidence of the plasma on the magnet ic  wall (Pz e 0). 

Substituting (2.17) into (2.9), (2. 10), and (2, 12) and going over to the dimensionless variables 

~) = eq)/m_c 2, a = eA/m_e ~, ~ = x / ~ .  = (4~noe2/m_c2) 1/' x ,  

we obtain 

w 

d%p _ Q1 ( %  a) = N_  (% a) - -  N+ (~p, a) (N_ = --P- N+ = P+ ) 

d~a 
a~--~ = Q ,  (4 ,  a) = I_ (4 ,  a) + I+ (4 ,  a ) ,  

P ~ + a  P _ 4 - ] /  t + P _ ~ + ( P ~ + a  2) , 
I _ - -  Pl -  in ] / t + ( P 2 + a )  ~ 

~ta- -P,  l n . p + + ] / t + P + 2 - q - - ( P , - - , a ) '  ( m_)  
I+ - -  t " ~  V t + (P~-- r~,,) ~ r~ = ~++ ' 

p ={(PXO-2-}-2*]/ - t+P*-2+e22+~fi - -2P2a--a2) ' /*  
- (p_~ < o) 

(PI+ ~ - -  21x~ ] / t  -}- PI+ 2 q- P2 ~ + ~x~ap "Jr" 2lxP2a - -  p3a~) % 
P+ [ 0 (P+~ ~ O) 

A solution to system (2. t8), 

(p_~ > 0), 

(P+~ > 0). 

(2. 19) was found by considering instead the system 

(2. 18) 

(2. 19) 

0 r  ~ (t, ~) 0~, ~ (t, ~) Q1 (4 ~ a~ Oa ~ (t, ~) O~a ~ (t, ~) Q2 (4  ~ a~ (3.1) 
ot = 0~  ~ U - -  - -  o~ 2 

whose solution, since the constant terms and the boundary conditions are independent of " t ime"  t, embraces the steady- 
state regime and is linked with the solution of the initial system by the relations 

~b (~) = l i ra  4~ ~), a (~) = l i m a  ~ (t, ~). (3.2) 
t---~co t - + c ~  

A difference analogue of gqs. (3.1) was integrated on a high-speed electronic computer,  using a special method 
that made it possible to fix the turning point of the ion from the max imum value of the x-component  of the momen-  
tum; thus we were able to make a careful check on the region of max imum gradients of r and a. 

This special approach was made necessary by the great ma themat ica l  difficulty of solving system (3. 1), which 
was associated not only with its considerable nonlinearity but chiefly with the presence of two fundamental ly different 

characteristic scales of variation of the functions for each of Eqs. (3.1). 

In fact, in a number of cases the spatial  scale of variation of the magnet ic  f ield R (ion Larmor radius) differs 
sharply from the Debye radius D - the characterist ic length at which significant charge separation is to be expected 

(Fig. 2). 
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In the following section some results are given for calculation of specific physical examples according to the 
above method. 

w 4. Figure 2 gave a typical picture of the space distribution of the principal physical quantities in selfconsistent 
electrostatic and magnetic fields corresponding to a plasma with parameters/~ = 1/1836, Pl- = 10"1, PI+ = 2.24 x 10 -3, 
P2 = 0, where in accordance with w 2, 

PI•  = - ' ~  k ~--C--j j 

Here and in Figs. 3, 6, 7, the magnitudes of the fields H and E (curves 1 and 2) are shown by heavy continuous 
lines, the total current density (curve 1) and the charge density p (curve 2) by thin continuous lines. The dot-dash 
curves and 2 correspond to average values of the transverse velocity of the negative ( v )  and positive (v+) components. 
The broken-line curve in Fig, 3 corresponds to the current density j_, while in Fig. 7 it corresponds to the charge den- 
sity p_. 
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Fig. 2 Fig. 3 

Figure 2 shows a typical spatial picture of the boundary layer with: 

m_c ~ m c~ 
[El = 0.025 ~ E, [ H i =  0.1i57 ~ H, [/] = lO-necnd, [p] = i0"~en0p, [ v ]  = 0.02cv_ . 

(here and below dimensionless quantities are contained in square brackets). 

Figure 3 shows the boundary layer for oblique incidence of the plasma on the "magnetic wall" with: 

ix = 0.t, PI+ --- P l - "  0.1, P~ = P2. = - -  0.t42 , 
/ n  c ~ 

0.269 ~ H, [/1 ---- 0.2e~0/ , [El = 0.1 ~ E, [H] ---- 

[/+1 = 0.2echo~+, ILl  = 0.2ecnoL, [Pl =fl.2enop, [v_] = 0.2cv_, [v+l = 0.2cv+ �9 

In both figures the distance is plotted along the x-axis in units of 

/ m c ~ \'h 

At nonrelativistic plasma particle energies, g. is of the order of ] / ' R r ,  where R and r are, respectively, the par- 
ticle I.armor radii with p+ = rn+cPz+ , p_ = rn_ePl_. These particles, possessing (cf. (2. 17)) a maximum initial m o -  
mentum in a direction normal to H0, will be called probe particles. 

The characteristic flash of positive charge and, in accordance with [1], the almost complete energy exchange 
between the heavy and light plasma components at the reflection point of the probe electron ( v  >> v+) are shown quite 
clearly in Fig. 2. The magnetic field strength decreases by an order of magnitude at a distance of roughly 24g,; in 
this case 

R = 38.7~,, ] / ' R T =  5 .785~, .  

An interesting situation arises upon oblique incidence of the particles on the magnetic field. When P2 < 0, the 
electrons, which lead the ions in the initial stage of motion, acquire the possibility of creating an additional excess 
positive charge density. Instead of a double, we get a triple charged layer. At some P2 = P2 < 0, the jump in electro- 
static potential 5~0 = r (09, and with it the dipole moment of the boundary layer, vanish (Fig. 3), after which, wi th  



further decrease in Pz, 5@ changes sign. At Pl+ = Pl = P1, 

/0 g 

I0 t L_ 

,0' % _ . 7 . .  ..... 

,o" : / / .  
10 " z t P' 

J iog Itf' IO~ 10' 10 z I0 a 

Fig. 4. Characteristic dimensions of 
boundary layer as a function of par- 
ticle momentum in the plasma (dou- 
ble logarithmic scale). 

are given in units of g. aud are measured 
ion,  while, by definition of LH, L E and l ,  
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The quantity D, 

P2 is determined by the simple formula 

P1 (I -- ~) 
P' *  = 2 g~ (4. i) 

As calculations show, a decrease in p, with all other plasma parame- 
ters remaining the same, leads to a sharp increase in the amplitudes of p, E, 
and other quantitative characteristics (in this connection the machine t ime 
also increases), the qualitative effect being much less significant. It is there- 
fore of interest to perform a series of calculations at an intermediate value of 
p, but over a wide range of energies, so as to trace the nature of the changes 
in the structure of the boundary layer upon transition from the nonrelativistic 
to the ultrarelativistic region. 

The corresponding data are given in Figs. 4, 5. Here p = 0. 25, P2 = 0, 
Pl+ = Pl- = Pl and varies from 10 "3 to 103. All the linear dimensions in Fig. 4 
from the origin, which is coincident with the point of reflection of the probe 

- -  LH) - -  0.1Ho, E (--  L/~) = 0.tEma x , 

P(--O = 0 .  

/ 
/ 

lff ~ llz ~ 101 iOz lO ~ 
which serves as Debye radius, 

Fig. 5. Principal physical quantities 
as a function of the momentum of 
particles incident on a "magnetic 
wall. " 

e [g#~ e [(])max] 
(t) ~ ~  m_e~ ' (2) ~max -- m_e~ 

(3) H o =  e~+ H 
iNZ C2 0 

e~+ [ - -  Emal~ ] 
(4) (--Emax)=- rn_c 2 

p+ [ i - I  [i1 
(5) - ~ ,  ( 6 ) i - -  (7) i = - 

echo ' ecB, o 

is related with the kinetic energy of the probe particles as follows: 

D 2 = t ~-1 [(t  + PI+ ~ -t-/%D 'I' - -  t1 + 

-k (t + P 1 -  ~ § P2D 'h - -  t .  

The notations H0, Ema x, P+, 9_,/_, / and ~max-~-~}~) in Fig. 5 denote maximum values of the corresponding quan- 
tities, and ~O ~ denotes the value of the electrostatic potential at which the probe particles would be reflected at one 

point. 

It is interesting to note that (as follows directly from Figs. 4, 5) the dependence upon particle momentum, for 
the majority of quantities determining the structure of the boundary layer, is exponential in nature in the nonrelativis- 
tic and ultrarelativistic regions. Data given below illustrate the energy redistribution between components at the probe 

particle reflection points. 

P z =  t0 -s i0 -~ t0-z t t0 

m a x v _  _0.19998.10_ 2 0.19958.10_ 1 0.18986 0.85654 0.99329 
c 

maxv+-_0 .50006 . t0 - s  0.50132.t0 -~ 0252756.t0 -1 0.58885 0.99065 
C 

102 10~ 

0.99954 0.99998 

0.99877 0.99969 

We recall  that, according to the "neutral" layer theory, max v . / m a x  v+ = 4 at p = 0.25. With increase in energy 

this ratio changes and finally approaches unity, while v- and v approach the speed o f  light c. 
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Figures 6 and 7 both for (g = O. 25) show the structure of the boundary layer for relatively low (Pt = 10-~) and rel- 
ativistic (Pl = 10) energies. 

Naturally, it is impossible to encompass the every problem associated with the theory of the stationary boundary 
layer in one article. Our real aim is to draw attention to the possibilities of the method used and to note the laws fol- 
lowing from a consideration of the complete spatial picture of a selfconsistent electromagnetic field in a boundary 
layer. 

Fig. 6. Boundary layer for nonrelativis- 
tic plasma particle energies. 

[El = 10 -4 ~ . ~ B  
rib r 

[ t / l  = 0.1826- t0-x ~ H 

[]] - -  2.tO-3ecno], [p] = 4.tO-~enop 

[v_] - -  iO-2cv_, [v+] = 2.t0-2cv+ 

. . . . . . . . . . . . . . . . . . . . .  " I ! 

Fig. 7. Boundary layer between magnetic field 
and relativistic plasma 

rn_c �9 
[El = 2o W E 

rn_c 2 
[H] ---- 5.32a ~ H 

i l l  = 2ecnd_, if] = 2ecno], 

[p] ----- enop, [e_] = cv_, [e+l = ce+ 

The author is grateful to E. S. Kuznetsov for his interest in the article and to M. G. Kuz'min,  V. S. Imshermik 
and M. V. Maslennikov for valuable discussion. 
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